Scientific Journal

Herald of Advanced Information Technology


The research deals with improving methods and systems of control over power systems based on intellectualization of dispatch  decision support. There are results of developing a principal trigger scheme of the decision support system algorithm. The proposed  model of algorithm visualization in the form of a trigger state network of the computer system provides interaction with power ob jects of mining and metallurgical complexes and regions. A new interpretation of components of the network trigger model is intro duced. The model is interactively related to both user-operator actions and states of power system components. With that, the state of  the automata model is associated with fulfillment a set of metarules to control the logical inference. There are new forms of present ing algorithms controlling knowledgebases that interact with the external environment and aggregate primitives of states, triggers and  transactions of operations and generalize standard visualization languages of algorithms are proposed. This allows unification of  smart systems interacting with the external environment. The authors develop models for representing knowledgebase processing  algorithms interacting with power objects that combine states, triggers and transaction operations and generalize standard visualiza tion languages of algorithms. This enables description of functioning database algorithms and their event model, which provides a  reliable unification of smart systems interacting with control objects of mining and metallurgical power systems. The research solves  the problem of building a knowledgebase and a software complex of the dispatch decision support system based on the data of com putational experiments on the power system scheme. The research results indicate practical effectiveness of the proposed approaches  and designed models. 


1. Grishanov, S. A. “Expert System for Diagnosis of Generators Unit of Thermal Power Station” (in  Russian). Scientific papers DonNTU. Series: “Electrical and power engineering”. Ukraine. 2013; Vol.  1(14): 83–90. DOI: 

2. Osak, A. B., Panasetsky, D. A. & Buzina, E. Ya. “Consumer Operation Mode-Wise Intelligent  Emergency Control” (in Russian). Irkutsk State Technical University Bulletin. Irkutsk: Russian Federation.  2017; Vol. 21. No. 9: 173–184. DOI: 

3. Negnevitsky, M., Voropai, N., Kurbatsky, V., Tomin, N. & Panasetsky, D. “Development of an In telligent System for Preventing Large-Scale Emergencies in Power Systems”. IEEE Power & Energy Society  General Meeting. 2013. p. 1–5. DOI: 

4. Sinchuk, O. N., Kozakevych, I. A. & Vornikov, D. N. “Control System of Wind Generator Based on  Switched Reluctance Motor”. Applied Aspects of Information Technology. Publ. Science and Technical.  Odessa: Ukraine. 2019; Vol.2 No.3. 230–242. DOI: 

5. Massel, L. & Kuzmin, V. “Typal Intelligent DSS for Making Strategic Decisions in the Energy Sec tor and Examples of Application Based on Agent-Service Approach”. Proceedings of the 21st International  Workshop on Computer Science and Information Technologies (CSIT 2019). Atlantis Highlights in Computer  Sciences. 2019; Vol. 3: 273–278. DOI: 

6. Nalepa, G. J. “Modeling with Rules Using Semantic Knowledge Engineering”. Intelligent Systems  Reference Library. Publ. Springer, Cham. Springer International Publishing AG. 2018; Vol. 130: 435 p.  DOI: 

7. Wrzalik, A. & Jereb, B. “Use of Expert Systems in Crisis Management”. Proceedings of the confer ence System Safety: Human - Technical Facility - Environment, CzOTO(2019). 2019; Vol.1 Issue 1: 406– 411. DOI: 

8. Sinchuk, O. N., Fedotoff, V. A., Somochkyn, Al. B., Kozakevych, I. A. & Somochkyna S. V. “Сomputer Simulation of Movement and Accurate Positioning of Mining Electric Locomotives Trains when  Unloading Cars”. Applied Aspects of Information Technology. Publ. Nauka i Tekhnika. Odesa: Ukraine.  2020; Vol. 3 No. 3. 165–178. DOI: 

9. Morkun, V. S. & Kotov, I. A. “Intellectualization of Emergency Control of Power Systems on the  Basis of Incorporated Ontologies of Knowledge-Bases”. Acta Mechanica ET Automatica. 2019; Vol. 13  No. 2: 86–94. DOI: 

10. Wang, R., Wang, G., Yan, Y., Sabeghi, M., Ming, Z., Allen, J. K. & Mistree, F. “Ontology-Based  Representation of Meta-Design in Designing Decision Workflows”. ASME. J. Comput. Inf. Sci. Eng. 2019;Vol. 19(1): 19 p. DOI: 

11. Zhang, J., Zhao, Wu, Xie, G. & Chen, H. “Ontology- Based Knowledge Management System and  Application, Procedia Engineering”. Procedia Engineering. 2011; Vol.15: 1021–1029. DOI: 10.1016/j.proeng.2011.08.189. 

12. Naykhanova, L. V. “The Technology of Creating Methods for the Automatic Construction of Ontol ogies Using Genetic and Automatic Programming” (in Russian). Publ. Buryat Scientific Center. Siberian  Branch of the RAS. Ulan-Ude: 2008. 244 p. ISBN 978-5-7925-0287-1. 

13. Antonov, I. V. & Voronov, M. V. “Method of Automated Construction of Domain Ontology” (in  Russian). Data Modeling and Analysis. 2011; Vol 1 No 1: 116–130. DOI: 14. Hien D. Nguyen, Nhon V. Do, Nha P. Tran, Xuan Hau Pham & Vuong T. Pham. “Some Criteria of  the Knowledge Representation Method for an Intelligent Problem Solver in STEM Education”. Applied  Computational Intelligence and Soft Computing. 2020; Vol. 2020: 14 p. DOI: 2020/9834218. 

15. Gavrilova, T. A. & Khoroshevsky, V. F. “Knowledge Bases of Intelligent Systems” (in Russian).  Publ. Piter. SPb.: Russian Federation. 2000. 384 p. ISBN 5-272-00071-4. 

16. Golitsyna, O. L. & Zaitseva, A.V. “Applied Ontologies Formation Based on Subject Area  Texts”. KnE Engineering. 2018; Vol. 3(6): 6–17. DOI: 17. Euzenat, J. & Shvaiko, P. “Ontology Matching”. Springer-Verlag Berlin Heidelberg. 2013. 511 p.  DOI: 

18.Tarus, J. K., Niu, Z. & Mustafa. G. “Knowledge-Based Recommendation: A Review of Ontology Based Recommender Systems for E-Learning”. Artif Intell Rev. 2018; Vol. 50: 21–48. DOI: 10.1007/s10462-017-9539-5.

19. Kudryavtsev, D. V. “Knowledge Management Systems and Application of Ontologies” (in Rus sian). Publ. Polytechnic University. SPb.: Russian Federation2010. 344 p. ISBN 978-5-7422-2982-7.

20. Mika, P. & Akkermans, H. “Towards a New Synthesis of Ontology Technology and Knowledge  Management”. Knowledge Engineering Review, Cambridge University Press. 2004; Vol. 19 No 4: 317–345.  DOI: 

21. Gao, W., Guirao, J.L., Basavanagoud, B. & Wu, J. “Partial Multi-Dividing Ontology Learning Al gorithm”. Computer Science. Inf. Sci. 2018; Vol. 467: 35–58. DOI: j.ins.2018.07.049. 

22. Chaplinsky, Yu.P. “Ontological Components of Manager Decision-Making Support” (in Ukrainian).  Scientific papers. NUFT Bulletin. 2013; No. 48: 65–68. 

23. MirHassani, S. A. “Hooshmand F. Models and Mathematical Logic”. Methods and Models in Math ematical Programming. Publ. Springer, Cham. 2019. 67–113. DOI: 27045-2_3. 

24. Aristidou, M. “Is Mathematical Logic Really Necessary in Teaching Mathematical Proofs”. Ameri can Journal of Education. 2020; Vol.7 Issue 1: 99–122. DOI:

25. Spitsyn, V. G. & Tsoi, Yu. R. “Intelligent systems” (in Russian). Tomsk Polytechnic University  Publ. Tomsk:Russian Federation2012. 176 p. ISBN: 5-98298-354-3. 

26. Morkun, V. S. & Kotov, I.A. “Information Technologies for Power Supply Dispatch Control Based  On Linguistic Corpus Ontologies”. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. Dniprope trovsk:Ukraine. 2019; Vol. 6(174): 130–136. DOI: 

27. Pollak, G. A. “Intelligent Information Systems” (in Russian). Publ. Center of the South Ural State  University. Chelyabinsk: Russian Federation. 2011. 141 p. 

28. Corkill, Dalvi Prathamesh. “Collaborating Software: Blackboard and Multi-Agent Systems &  the Future”. In Proceedings of the International Lisp Conference. New York: 2003. 12 p. 29. Matuszny, M. “Building Decision Trees Based on Production Knowledge as Support in Decision Making Process”. Production Engineering Archives. 2020; Vol. 26(2): 36–40. DOI:  10.30657/ pea.2020.26.08. 

30. Kang, J. A. “Shortening Matching Time in OPS5 Production Systems”. IEEE Transactions on  Software Engineering. 2004; Vol.30. Issue 7: 448–457. DOI:

31.“DS-8 Instruction for the Prevention and Elimination of Technological Disruptions in the Electrical  Part of Power Plants and Electrical Grids in the Dnieper ES Region” (in Russian). Ministry of Fuel and En ergy of Ukraine. State Enterprise National Energy Company “Ukrenergo”. Dnieper Electric Power System.  Zaporizhzhia: Ukraine. 2008. 67 p. 

32. Andreev, E. B., Kutsevich, N. A. & Sinenko, O. V. “SCADA Systems: An Inside View” (in Rus sian). Publ. “РТSoft”. Moscow: Russian Federation. 2004. 176 p. ISBN 5-9900271-1-7.

33. Domyshev, A. V., Osak, A. B. & Buzina, E. Ya. “Automation of Control and Management Systems  for Electric Power Facilities Based on SCADA-ANARES” (in Russian). Conference Proceedings: System  Research in Energy. ISEM SO RAS. Irkutsk: Russian Federation. 2005; Issue 35: 230–237.

34. Jackson, P. “Introduction to Expert Systems” (in Russian). Williams Publ. 2001. 624 p.

35. Thakar, S. & Nagori V. “Analysis of Rule Based Expert Systems Developed and Implemented for  Career Selection”. In: Modi, N., Verma, P., Trivedi, B. (eds). Proceedings of International Conference on  Communication and Networks. Advances in Intelligent Systems and Computing. Publ. Springer. 2017; Vol. 508: 723–731. DOI: 

36. Maylawati, D., Darmalaksana, W. & Ramdhani, M. A. “Systematic Design of Expert System Using  Unified Modelling Language”. IOP Conference Series: Materials Science and Engineering. The 2nd Annual  Applied Science and Engineering Conference (AASEC 2017) 24 August 2017. Bandung: Indonesia2018;Vol. 288: 7 p. DOI: 

37. Mohammed, A. A., Ambak, K., Mosa, A. & Syamsunur, D. “Expert System in Engineering Trans portation: A Review”. Journal of Engineering Science and Technology. 2019; Vol. 14(1): 229–252.
Last download:
4 Oct 2021


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]