Scientific Journal

Herald of Advanced Information Technology

Approaches to the algorithmization of the process of localizing faulty subschemes of a wide class of electrical devices (in particular, electrical and electronic) are considered, appropriate algorithms are proposed, and the possibility of their application in practical applications is shown. In particular, it was noted that in modern conditions, with increasing requirements for the reliability of electrical devices and expanding the set of functions performed by them, not only the full feasibility of monitoring the operability of these devices at the production and operation stages should be considered, but also ensuring the potential possibility of diagnosing the developed devices (systems ) - at the design stage. At the same time, the observed complication of the methodological support of individual procedures and the whole diagnostic process as a whole is indicated, which, on the one hand, is connected with the need to carry out the most complete and comprehensive diagnosis, and on the other hand, determines a sharp increase in computing resources and labor costs for the implementation of a diagnostic experiment. One of the possible solutions to this contradiction is the formalization and subsequent algorithmization of diagnostic procedures, which ensures the automation of the latter and, as a result, reduces the time of diagnosis and improves its quality. The proposed algorithmic tools implement model-oriented methods for the localization of faulty subschemes of electrical devices (systems), in particular, the method of training and testing characteristics. A distinctive feature of these methods and the algorithmic support considered in the work is the use of models of the devices under study during a diagnostic experiment, which makes it possible to form and test functionally necessary (ideally, any) health hypotheses of the latter.
1. Kutin, V. М. (2001). Diagnostirovanie elektrooborudovaniya elektricheskih system. [Diagnosing electrical equipment of electrical systems]. Kyiv, Ukraine, UMKVO Publ., 104 p. (in Russian).
2. Lomakina, L. S. (2015). Metodologicheskie aspektyi diagnostirovaniya sostoyaniy tehnicheskih i programmnyih system. [Methodological aspects of diagnosing the states of technical and software systems]. Basic Research Publ., No. 12-2. pp. 297-304 (in Russian)
3. Lykov, A. A. (2012). Tehnicheskoe diagnostirovanie i monitoring sostoyaniya ustroystv avtomatiki. [Technical diagnostics and monitoring of the state of automation devices]. Transport of the Russian Federation Publ., No. 5 (42), pp. 67-72 (in Russian).
4. Miroshnik, M. A. (2012). Issledovanie metodov diagnostirovaniya slozhnyih system. [Investigation of methods for diagnosing complex systems]. System processing information, Iss. 6 (104). pp. 70-75 (in Russian).
5. Fainzilberg, L. S. (2010). Matematicheskie metodyi otsenki poleznosti diagnosticheskih priznakov. [Mathematical methods for assessing the usefulness of diagnostic features]. Кyiv, Ukraine, Оsvita Ukraini Publ., 152 p. (in Russian).
6. Filaretov, V. V. (1998). Topologicheskiy analiz elektronnyih shem metodom vyideleniya parametrov. [Topological analysis of electronic circuits by selecting parameters]. Electricity Publ., No. 5. pp. 43-52 (in Russian).
7. Bandler, J. W. & Salama, A. E. (September 1985). “Fault Diagnosis of Analog Circuits”, Proceedings of the IEEE 73(8), pp. 1279-1325. DOI: 10.1109/PROC.1985.13281.
8. Bilski, A. & Wojciechowski, J. (2016). “Automatic parametric fault detection in complex analog systems based on a method of minimum node selection”. Int. J. Appl. Math. Comput. Sci., Vol. 26, No. 3, 655- 668. DOI:10.1515/amcs-2016-0045.
9. Catelani, M. & Fort, A. (Apr 2002). “Soft fault detection and isolation in analog circuits: some results and a comparison between a fuzzy approach and radial basis function networks”, IEEE Transactions on Instrumentation and Measurement, Vol. 51, Issue: 2, pp. 196-202. DOI: 10.1109/19.997811.
10. Cuong, Pham, Long, Wang, Salman, Baset, & Ravishankar, K. Iyer. (February, 2017). “Failure Diagnosis for Distributed Systems Using Targeted Fault Injection”. IEEE Transactions on Parallel and Distributed Systems, Vol. 28. Issue 2, pp. 503-516. DOI:10.1109/TPDS.2016.2575829
11. Huang, Jiun-Lang, &. Tim, Cheng K.-T. (2000). “Test point selection for analog fault diagnosis of unpowered circuit boards”. IEEE Transactions on Circuits and Systems II Analog and Digital Signal Processing 47(10), pp. 977-987. DOI: 10.1109/82.87714091.
12. Luo, H., Lin, H. Wang, Y., & Jiang, Y. (2012). “Module level fault diagnosis for analog circuits based on system identification and genetic algorithm”, Int. Journ. Measurement 45(4), pp. 769-777. DOI: 10.1016/j.measurement. 2011.12.010.
13. Bowman, R. J., & Lane, D. J. (1988). “A knowledge based system for analog integrated circuit design”. IEEE Int. Conf. Computer Aided Design, pp. 210- 212.
14. Czaja, Z. (2008). “A fault diagnosis algorithm of analog circuits based on node-voltage relation”. IEEE 12-th IMEKO TC1 & TC7 Joint Symposium on Man Science & Measurement, Vol. 3, 5, pp. 297-304.
15. Dong, H., Ma. T., He B., & Liu. G. (2017). “Multiple-fault diagnosis of analog circuit with fault tolerance”. IEEE 6-th Data Driven Control and Learning Systems (DDCLS), pp. 167-172. DOI: 10.1109/DDCLS. 2017.8068085.
16. Verlan, A. A. (2013). Ob odnom sposobe postroeniya sistemyi kontrolya vtorichnyih istochnikov elektropitaniya [On one method of building a system for monitoring secondary power sources]. Mathematical and computer-aided modeling. Tech. Science, Kam’yanets-Podilsky, Kam’yanets-Podіlsky National Univercity, Iss. 8. pp. 31-38 (in Russian).
17. Volkov, Yu. V. (2016). Sistemyi tehnicheskogo diagnostirovaniya, avtomaticheskogo upravleniya i zaschityi. [Systems of technical diagnostics, automatic control and protection]. St-Petersburg, Russian Federation, HSE Publ., 115 p. (in Russian).
18. Bondarenko, V. М. (1986). Issledovanie i razrabotka algoritmov i programm diagnostiki nelineynyih elektricheskih tsepey. [Research and development of algorithms and programs for diagnostics of nonlinear electric circuits]. Kiyv, Ukraine, Preprint of Academy of Sciences of the Ukrainian SSR. Institute of Electrodynamics; No. 446 (in Russian).
19. Bondarenko, V. M. (1985). Kompleks programm diagnostiki elektricheskih tsepey. [Complex programs for the diagnosis of electrical circuits]. Abstracts of reports of the All-Union Scientific-Technical Conference ”Modeling-85”. Kiev, Ukraine, Naukova Dumka Publ., Part 2., pp. 34-36 (in Russian).
20. Verlan, A. A. (2015). Diagnostirovanie slozhnyih elektronnyih shem na osnove metoda obuchayuschih i proverochnyih harakteristik. [Diagnosing complex electronic circuits based on the method of training and testing characteristics], Electrotechnical and Computer Systems, No. 19, pp. 272-275. Access mode: UJRN / etks_2015_19_60 (in Russian).
21. Verlan, A. А. (2008). Lokalizatsiya neispravnyih elektronnyih podshem metodom obuchayuschih i proverochnyih harakteristik. [Localization of faulty electronic subcircuits by the method of training and testing characteristics]. Mathematical and computer-based models. Series: Technical sciences: collection of reports, Kam’yanets-Podіlsky, Kam’yanets-Pod_lsky National University named after Ivan Ogienka, Ukraine, Issue 1, pp. 140-144 (in Russian).
22. Verlan, A. F. (2017). Lokalizatsiya neispravnyih fragmentov pri diagnostirovanii bezyinertsionnyih sistem. [Localization of faulty fragments in the diagnosis of inertialess systems]. Electrotechnical and Computer Systems: Theory and Practice. Special Edition. Astroprint Publ., pp. 439-445 (in Russian).
23. Polozhanko, S. A. (2018). Planuvannya dIagnostichnogo eksperimentu pri lokalIzatsIYi nespravnostey pIdshem bezInertsIynih sistem. [Planning a diagnostic experiment in the localization of malfunction of the subsystems of inertia-free systems]. Informatics and mathematical methods in modeling Publ., Vol. 8. No. 1. pp. 5-16 (in Ukra-inian).
24. Babakov, M. F. (2001). Metodyi mashinnogo modelirovaniya v proektirovanii elektronnoy apparaturyi. [Methods of machine modeling in the design of electronic equipment]. Tutorial. Kharkov, Ukraine, National Aerospace University “Kharkiv Aviation Institute”, 90 p. (in Russian).
25. Filaretov, V. V. (1998). Topologicheskiy analiz elektronnyih shem metodom vyideleniya parametrov. [Topological analysis of electronic circuits by selecting parameters], Electricity Publ., No. 5, pp 43-52 (in Russian).
26. Butyrin, P. A. (2000). Diagnostika slozhnyih elektricheskih tsepey po chastyam. [Diagnostics of complex electrical circuits in parts]. News RAS: Energy Publ., No. 2. Pp. 136-137 (in Russian).
27. Andon, F. I. (1987). O reshenii zadachi razbieniya grafa pri optimizatsii vyichislitelnogo protsessa v ASU. [On the Solution of the Problem of Partitioning a Graph for the Optimization of the Computing Process in an ACS]. Electronic Modeling Publ., Vol. 9. No. 1, pp. 13-15 (in Russian).
28. Vaida, N. P. (1987). Algoritm dekompozitsii ustroystv REA pri komponentnom diagnostirovani. [Algorithm of the decomposition of electronic devices with component diagnostics]. Moscow, Russian Federation, Radio i Svyaz Publ., 256 p. (in Russian).
29. Verlan, A. F. Lokalizatsiya neispravnyih fragmentov pri diagnostirovanii bezyinertsionnyih system. [Localization of faulty fragments in the diagnosis of inertialess systems]. Electrotechnical and Computer Systems: Theory and Practice. Special Edition, Ukraine, Astroprint Publ., 2017, pp. 439-445 (in Russian).
Last download:
29 June 2020

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]