References
1. Masson, M. E. J., & Loftus, G. R. (2003). “Using Confidence Intervals for Graphically Based Data Interpretation,” Canadian Experimental Psychology, Vol. 57, No. 3, pp. 203-220.

2. Ware, C. (2012). Information Visualization: Perception for Design. 3rd Edition. N.-Y., Morgan Kaufmann Publishers, 537 p.

3. Kosara, R., Healey, C. G., Interrante, V., Laidlaw, D. H., & Ware, C. (2003). “Thoughts on User Studies: Why, How, and When”, Сomputer Graphics and Applications, Vol. 23, No. 4, July/Aug. 2003, pp. 20-25.

4. Kosara, R., Miksch, S., Hauser, H., Schrammel, J., Giller, V., & Tscheligi, M. (2002). “Useful Properties of Semantic Depth of Field for Better f+c Visualization”, Proc. Joint Eurographics-IEEE TCVG Symposium. IEEE Trans. Visualization and Computer Graphics, Vol. 3, No. 2, Visualization 2002 (VisSym ’02), pp. 205-210.

5. Swan, J. E., Gabbard, J. L., Hix, D., Schulman, R. S., Kim, K. P. (2003). A Comparative Study of User Performance in a Map-Based Virtual Environment, IEEE Virtual Reality 2003, Mar. 2003, pp. 259-266. DOI: 10.1109/VR.2003.1191149.

6. Cabral, B., & Leedom, L. C. (1993). “Imaging Vector Fields Using Line Integral Convolution,” Computer Graphics, SIGGRAPH ’93 Proc., Vol. 27, Aug. 1993, pp. 263-272.

7. Cabral, В., & Leedom, L. C. (1995). “Highly parallel vector visualization using line integral convolution”. In Seventh SIAM Conference on Parallel Processing for Scientific Computing. Feb. 1995. pp. 802-807.

8. Turk, G., & Banks, D. (1996). Image-Guided Streamline Placement. Proc. SIGGRAPH’96, pp. 453-460.

9. Globus, A., Levit, C., & Lasinski, T. A. (1991). “Tool for Visualizing the Topology of Three-Dimensional Vector Fields”, Proc. Visualization’91, pp. 33-40.

10. Maxwell, S. E., & Delaney, H. D. (1990). “Designing Experiments and Analyzing Data: A Model Comparison Perspective”, Belmont, California: Wadsworth.

11. Wainer, H., & Thissen, D. (1993). Graphical data analysis. In: G. Keren, & C. Lewis, (Eds.). “A handbook for data analysis in the behavioral sciences: Statistical issues”. Hillsdale, NJ: Lawrence Erlbaum, pр. 391-457

12. Tufte, E. (1983). “The Visual Display of Quantitative Information”. Graphics Press.

13. Cleveland, W. S. (1985). The Elements of Graphing Data. Wadsworth.

14. Loftus, G. R., & Masson, M. E. J. (1994). “Using Confidence Intervals in Within-Subject Designs”. Psychonomic Bulletin and Rev., Vol. 1, pp. 476-490.

15. Bancroft, G. V., Merritt, F. J., Plessel, Т. C. Kelaita, P. G., McCabe, R. K., & Globus, A. (1990). “FAST: A multiprocessed environment for visualization of computational fluid dynamics”. In Proc. of Visualization 90, pp. 14-27,

16. Bryson, S., & Levit,t C. (1991). “The virtual windtunnel: An environment for the exploration of three-dimensional unsteady flows”. In Visualization'91, pp. 17-24.

17. Jobard, Bruno & Erlebacher, Gordon & Hussaini, Mohammed. (2002). “Lagrangian-eulerian advection of noise and dye textures for unsteady flow visualization”, IEEE Transactions on Visualization and Computer Graphics, 8, 3, 2002, pp. 211-222. DOI: 10.1109/TVCG.2002.1021575.

18. (2011). Pizaine, G., et. al. “Vessel geometry modeling and segmentation are using convolution surfaces and an implicit medial axis”. In: Biomedical Imaging: From Nano to Macro, IEEE International Symposium on. IEEE, 2011, pp. 1421-1424. DOI: 10.1109/ISBI.2011.5872666.

19. Muraki, S. (1991). “Volumetric Shape Description of Range Data using ”Blobby Model””, Computer Graphics 25 (4), pp. 227-235.

20. Nishimura, H., Hirai, M., & Kawai, T. (1985). “Object Modeling by Distribution Function and a Method of Image Generation”. Trans. Institute of Electronics and Communication Engineers of Japan J68-D (4), pp. 718-725.

21. Wyvill, G., McPheeters, C., & Wyvill, B. (1986). “Data Structure for Soft Objects”. The Visual Comput. 2 (4), pp. 227-234.

22. Vyatkin, S., Romanyuk, A., & Savitska, L. (2017). “Multi-level ray casting of function-based surfaces”, Journal of Physics: Conference Series, 803, No. 1. DOI:10.1088/1742-6596/803/1/012180.

23. Tuy, H., & Tuy, L. (1984). “Direct 2-D Display of 3-D Objects”. IEEE Computer Graphics and Application. 4 (10), pp. 29-33.

24. Karla, D., & Barr, A. H. (1989). “Guaranteed Ray Intersections with Implicit Surfaces”. Computer Graphics 23 (3), pp. 297-306.

25. Hart, J. C. (1994). “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit Surfaces”, The Visual Computer 12 (10), pp. 527-545.

26. Mitchel, D. (1990). “Robust Ray Intersection with Interval Arithmetic”. In Proc. on Graphics Interface, Toronto: Canadian Information Processing Society, pp. 68-74.

27. Vyatkin, S. I. (2007). “Complex Surface Modeling Using Perturbation Functions”. [Optoelectronics, Instrumentation, and Data Processing. 43 (3), 226–231]. Article in Optoelectronics Instrumentation and Data Processing 43(3):226-231 · June, 2007. DOI: 10.3103/S875669900703003X

28. Vyatkin, S. I., & Dolgovesov, B. S. (2018). “Compression of Geometric Data with the Use of Perturbation Functions”. Optoelectronics, Instrumentation and Data Processing, Vol. 54, No. 4, pp. 1-7. Vyatkin, S. I., & Dolgovesov, B. S. Optoelectron. Instrument. Proc. (2018) 54: 334. https://doi.org/10.3103/S8756699018040039.