Scientific Journal

Herald of Advanced Information Technology

EXPERIMENTAL RESEARCH AND COMPUTER MODELING OF THE OBSTRUCTION OCCURRENCE IN THE PNEUMATIC CONVEYING SYSTEMS PECULIARITIES
Abstract:
At designing new and modernizing existing pneumatic transport systems it is necessary to take into account changes in the electromechanical parameters of the equipment during start-up or other transient conditions that are most dangerous from the point of view of the occurrence of a blockage in the pneumatic system. Given the high cost of electricity and large volumes of production during the transportation of bulk materials, the urgent task is to reduce the specific consumption of compressed air during transportation, taking into account the development of automatic control systems for the main factors, namely, pressure loss at the outlet of the pneumatic system, affecting the occurrence of blockages of pneumatic conveying systems. The aim of the work is to conduct experimental studies and computer modeling of the features of blockage in pneumatic conveying systems during transportation of bulk materials associated with pressure loss at the outlet of the pneumatic transport systems. This goal is achieved by conducting experiments, on the basis of which an analytical expression is obtained to determine the speed of the mixture, which provides the minimum admissible pressure at the outlet of the air bag by the technological process. An analytical dependence of the occurrence of a possible clogging point on the pressure drop at the outlet of the air duct is obtained, which determines the minimum step of the impact on the transported two-phase flow in order to prevent the occurrence of blockages, and also, if necessary, indicates the place of occurrence of the blockage. It was established that with increasing pressure difference at the inlet and outlet of the pipeline, the point of possible blockage shifts towards the chamber feeder. Stabilization of the humidity of the compressed air supplied to the pneumatic line through the use of more sensitive and faster measuring equipment and automated control means will reduce the possibility of blockage, save energy, and therefore increase the efficiency of the pneumatic conveying system. Mathematical and computer models of the electric drive of the pneumatic transport system have been developed; graphs of electromechanical processes have been obtained, confirming its adequacy with an accuracy of ten-twelve percent for steady regime. Using these models will save time and money on conducting preliminary experiments in the development of new and modernization of existing pneumatic transport systems.
Authors:
Keywords
DOI
10.15276/hait01.2020.9
References
1. Harald Wilms. (2019). “Pneumatic conveying: optimal system design, operation and control pneumatic conveying”. – Available at: https://www.chemengonline.com/pneumaticconveying-optimal-system-design-operation-andcontrol/ – Access date: 14.03.2019. 2. D. Mills. (2004). “Pneumatic Conveying Design Guide”. Elsevier Butterworth-Heinemann, 637 p. 
3. Gomes, L. M. & Mesquita, Andre. (2013). “Effect of particle size and sphericity on the pickup velocity in horizontal pneumatic conveying”. Chemical Engineering Science, No. 104, pp. 780- 789. 
4. Marcus, R. D., Leung, L. S, Klinzing, G. & Rizk, Fadi. (1993). “Pneumatic Conveying of Solids: A Theoretical and Practical Approach”. Drying Technology, No. 11, pp. 859-860. 
5. Gomes, M. L. & Mesquita, Andre (2014). “On the prediction of pickup and saltation velocities in pneumatic conveying”, Brazilian Journal of Chemical Engineering, No. 31, pp. 35-46. 
6. Anantharaman, Aditya, Cahyadi, Andy, Hadinoto, Kunn & Chew, Jia Wei. (2016). “Impact of particle diameter, density and sphericity on minimum pickup velocity of binary mixtures in gassolid pneumatic conveying”, Powder Technology, No. 297, pp. 311-319. 
7. Mehdizad, M. & Kouhikamali, Ramin (2018). “Numerical investigation of the minimum fluidization velocity in a gas–solid fluidized bed using discrete phase model”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, No. 40, pp. 272-282, doi: 10.1007/s40430-018-1176-7. 
8. Liang, Cai, Grace, John, Shen, Liu, Yuan, Gaoyang, Chen, Xiaoping & Zhao, Changsui (2015). “Experimental Investigation of Pressure Letdown Flow Characteristics in Dense-phase Pneumatic Conveying at High Pressure”. Powder Technology. Vol. 277, pp. 171-180, doi: 10.1016/j.powtec.2015.03.002. 
9. Klinzing, G., Rizk, Fadi, D. Marcus, R & S. Leung, L. (2010). “An Overview of High-Pressure Systems Including Long-Distance and Dense Phase Pneumatic Conveying Systems”. Pneumatic Conveying of Solids. Particle Technology Series, Vol. 8, pp. 331-355, doi: 10.1007/978-90-481-3609- 4_9. 
10. Marcus, R. D. (1984). “Minimum energy pneumatic conveying”. I: Dilute phase. Journal of Environmental Quality, No. 13, pp.113-121. 
11. Lohrmann, P. C. & Marcus, R. D. (1984). “Minimum energy pneumatic conveying, II – dense phase”. Journal of pipelines, No. 4, pp.123-129. 
12. Anantharaman, Aditya, Cahyadi, Andy, Hadinoto, Kunn & Chew, Jia Wei. (2016). “Impact of particle diameter, density and sphericity on minimum pickup velocity of binary mixtures in gassolid pneumatic conveying”. Powder Technology, No. 297, pp. 311-319. 
13. Mehdizad, M. & Kouhikamali, Ramin (2018). “Numerical investigation of the minimum fluidization velocity in a gas–solid fluidized bed using discrete phase model”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, No. 40, pp. 272-280, doi: 10.1007/s40430-018-1176-7. 
14. Xiang, Junting & New, T. H. (2019). “Numerical investigations on a small-scale air-slide conveyor”. Journal of Applied Fluid Mechanics, No. 1, pp. 1-9, doi: 10.18869/acadpub.jafm 75.253.29219. 
15. Jens, Garbe, Arne, Hilck & Andreas, Wolf. “Pneumatic conveying of alumina – comparison of technologies”. – Available at: https://icsoba.org- /sites/default/files/2015paper/aluminiumpapers/AL0 8%20-%20Pneumatic%20conveying%20of%- 20alumina%20-%20comparison%20of%- 20technologies.pdf – Access date: 30.03.2019. 
16. Bhatia, A. (2019). “Pneumatic Conveying Systems”. – Available at: https://www.cedengineering.com /courses/pneumatic-conveying-systems – Access date: 14.03.2019. 
17. Kraus, N. Milton (1968). “Pneumatic conveying of bulk materials”. New York, USA, 338 p. 
18. Hu, Shengyong, Zhou, Fubao, Geng, Fan, Liu, Yingke, Zhang, Yifan & Wang, Qingxiang (2014). “Investigation on blockage boundary condition of dense-phase pneumatic conveying in bending slits”. Powder Technology, No. 266, pp. 96- 105. 
19. Zhang, Yifan, Zhou, Fubao, Xia, Tongqiang, Liu, Chun, Wang, Xinxin, Liu, Jun & Chen, Yazeng. (2015). “Experimental Investigation on Blockage Boundary for Pneumatic Conveying of Powders in Narrow Bifurcation Slits”. Drying Technology, Vol. 34, pp. 1052-1062, doi: 10.1080/07373937.2015.1092157. 
20. Zenz, F. A. & Othmer, D. F. (1960). “F1uidization and Fluid-Particle Systems, Reinhold”. New York, USA, 513 p. 
21. Rogovoj, A. S. (2016). “Energeticheskaia effektivnost pnevmotransportnykh ustanovok”. [Energy efficiency of pneumatic conveying systems]. Vіsnik Skhіdno-ukrainskogo natsіonalnogo unіversitetu іmenі Volodimira Dalia, No. 1 (225), pp. 189-196 (in Russian). 
22. Fabio, Novelli & Mike, Weyandt. (2019). “A quick look at pneumatic conveying system basics”. – Available at: https://www.powderbulk.com/wp-content/ uploads/2014/05/pbe_20100301_0030.pdf – Access date: 14.03.2019. 
23. Nazarova, E. S., Bondarenko, V. I. & Meleshko, I. A. (2018). “Issledovanie yavleniya transportnogo zapazdyvaniya v pnevmotransportnoy sisteme sypuchikh materialov”. [The research of transport delay occurrence in pneumatic transport system of the bulk materials]. Problems of energy saving in electrical systems. Science, formation and practice. Kremenchug, Ukraine, No. 5, pp. 27-29 (in Ukrainian). 
24. Ostrovskiy, G. M. (1984). “Pnevmaticheskii transport sypuchikh materialov v khimicheskoi promyshlennosti”. [Pneumatic trans-port of loose materials in the chemical industry]. Leningrad, Russian Federation, 104 p. (in Russian). 25. Timoshenko, V. I. & Knyshenko, Ju. V. (2013). “Pnevmotransport sypuchikh materialov s povy-shennym davleniem nesushchego gaza”. [Pneumo-transport of bulk materials with increased pressure of the bearing gas]. Nauka ta іnnovatsіi, Vol. 9, No. 1, pp. 5-17 (in Russian). 
26. Malykhina, N. A. & Pogonin, A. P. (2001). “Yavlenie zavala i matematicheskaya mo-del' opisaniya zavala v pnevmotransportnykh sistemakh”. [The phenomenon of obstruction and a mathematical model for describing obstruction in pneumatic conveying systems]. Miner's Week, pp. 216-217 (in Russian). 
27. Razumov, I. M. (1972). “Psevdozhizhenie i pnevmotransport sypuchikh materialov”. [Fluidization and pneumatic conveying of loose materials]. Moscow, Russian Federation, 240 р. (in Russian). 
28. Tarasov, V. P., Glebov, A. A. & Gejneman A. Е. (1999). “Raschet pnevmotransportnykh ustanovok”. [Calculation of pneumatic conveying systems]. Izvestija vuzov. Pischevaja tehnologija, No. 2-3, pp. 77-81 (in Russian). 
29. Sadovoi, O. V., Nazarova, O. S., Bondarenko, V. I. & Pirozhok, А. V. (2014). “Novoe v modelirovsnii I issledovsnii elektromekhanicheskih system stanov kholodnoi prokatki”. [New in modeling and research of electromechanical systems of cold rolling mills]: monographia Zaporizhzhia, Ukraine, “Prosvita”, 144 p. (in Russian).. Nazarova, O. S. (2015). “Matematicheskoe modelirovanie elektromekhanicheskih system stanov kholodnoi prokatki”. [Mathematical modeling of electromechanical systems of cold rolling mills]. Kiev, Ukraine, Tehnichna elektrodinamika, No. 5, pp. 82-89 (in Russian). 
31. Nazarova, O. S. (2019). “Modelirovanie elektromehanicheskih protsesov vzaimosviazannih mnogomassovih system”. [Modeling of electromechanical processes of interconnected multi-mass systems]. Tbilisi, Georgia, Energia, pp. 60-64 (in Russian). 32. Nazarova, O. S., Osadchyy, V. V., Meleshko, I. A. & Oleinikov, M. O. (2019). “Identifikaciia kutovoi shvidkosti pri zavadah v optichnii sistemi enkodera”. [Identification of angular velocity during interference in the optical encoder system]. Kharkiv, Ukraine, Visnik NTU “KhPI”, pp. 65-69 (in Ukrainian). 
33. Rudnev, Е. S. & Morozov, D. I. (2016). “Linearizovanaia matematicheskaia model sinhronnogo dvigatelia s postoiannimi magnitami kak obiekta upravleniia”. [Linearized mathematical model of synchronous engine with permanent magnets as a control object]. Donetsk, Ukraine, Zbirnik naukovih prats DonDTU, No. 1(45), pp. 88-93 (in Russian). 
34. Lupinos, О. N., Pylypenko, D. V. & Fedun, R. V. (2009). “Avtomaticheskoe upravlenie kompressornoi stanstiei ochistnih sooruzhenii”. [Automatic control the compressor cleansing buildings]. Donetsk, Ukraine, Naukovi pratsi DonNTU, No. 148, pp. 30-36 (in Russian). 
35. Shamina, V. A. (2012). “Avtomatizaysiia tehnologichnih obiektiv ta protsesiv. Poshuk molodih”. Zbirnik naukovih prats ХІI naukovotehnichnoi konferentsii aspirantiv ta dtudentiv. Donetsk, Ukraine, DonNTU, pp. 269-299 (in Ukrainian). 
36. (2019). “Truboprovod” [Pipeline]. – Available at: http://www.simumath.net/library/book.html?codeH YSTR_library. – Access date: 06.06.2019.

Received 03.01.2020
Received after revision 28.01.2020
Accepted 14.02.2020
Published:
Last download:
5 July 2020

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]