Scientific Journal

Herald of Advanced Information Technology

SPATIAL SYNCHRONIZATION OF CELLULAR AUTOMATA IN EVOLUTIONARY PROCESSES SIMULATION TASKS
Abstract:
Many applied tasks are simulated by difference equations that describe the vector of system states evolution in time. However it is required to take into account the spatial structure of simulated processes or systems in some tasks. In paper the possibility of a spatio-temporal processes simulation by cellular automata is considered. The brief review of two-dimensional cellular automata properties is provided. The principle of the most famous two-dimensional cellular automata “Game of Life” is described. Also the general way to set these automata in an analytical form by Reaction-Diffusion equation is considered. Concrete forms of the Reaction equation and Diffusion equation are constructed and invariant sets for this system are defined. The generalization of analytical cellular automata representation in total is provided. As an example, the model of population development is considered. It utilizes the classic Ferhulst equation, in which the spatial structure is taken into account having form of the cumulative neighbors’ impact on population changes rate. As per using of analytical form of cellular automata, different schemas of system spatio-temporal characteristics control are suggested. These schemas are based on feedback: delayed feedback (that is one that uses previous system states) and predictive feedback (that is one that uses predicted system states). As a result there is managed to synchronize spatial configuration of cellular automata and it can be interpreted as stable population development. Particularly, cellular automata could work in cycle with cycle length set earlier. For cellular automata evolution visualization the algorithms and their computer implementation are developed. Discrepancy function is suggested, due to which it is possible to evaluate the synchronization accuracy. Research results and examples of received configurations are presented.
Authors:
Keywords
DOI
10.15276/hait.04.2020.1
References
1. Malinetskiy, G. G. & Potapov, A. B. “Nonlinear Dynamic and Chaos: Basic Concepts”. Publ. Stereotype. Moscow. Russian Federation: 2018; No.27: 240 р. (in Russian). 
2. Małecki, K. & Iwan, S. “Development of Cellular Automata for Simulation of the Crossroads Model with a Traffic Detection System”. Communications in Computer and Information Science. Springer. New York City. USA: 2012; Vol. 329: 276–283. DOI: 10.1016/j.trpro.2017.05.476. 
3. Iwan, S. & Małecki, K. “Utilization of cellular automata for analysis of the efficiency of urban freight transport measures based on loading/unloading bays example”. Transportation Research Procedia. Elsevier. Amsterdam. Netherlands: 2017; Vol. 25: 1021-1035. DOI: 10.1007/978-3-642-34050-5_31. 
4. Wolfram, S. “A New Kind of Science”. Michigan University. Publ. Wolfram Media. Champaign. USA: 2002. 1197 p. 
5. S. Hoya White, A. Martı´n Del Rey & G. Rodrı´guez Sa´nchez. “Modeling epidemics using cellular automata”. Applied Mathematics and Computation. Elsevier. Amsterdam. Netherlands: 2007; Vol. 186: 193– 202. DOI: 10.1016/j.amc.2006.06.126. 
6. Satsuma, J., Willox, R., Ramani, A., Grammaticos, B. & Carstea, A. S. “Extending the SIR epidemic model”. Physica A: Statistical Mechanics and its Applications. Publ. Elsevier. Amsterdam. Netherlands: 2004; Vol. 336: 369–375. DOI: 10.1016/j.physa.2003.12.035. 
7. Quan-Xing, L. & Zhen J. “Cellular automata modeling of SEIRS”. Chinese Physics. IOP Publishing Ltd. Bristol. United Kingdom: 2005; Vol. 14: 1370–1377. DOI: 10.1088/1009-1963/14/7/018. 
8. Sirakoulis, G. Ch., Karafyllidis, I. & Thanailakis, A. “A cellular automaton model for the effects of population movement and vaccination on epidemic propagation”. Ecological Modeling. Publ. Elsevier. Amsterdam. Netherlands: 2000; Vol. 133: 209–223. DOI: 10.1016/S0304-3800(00)00294-5.
9. Beauchemin, C., Samuel, J. & Tuszynski, J. “A simple cellular automaton model for influenza а viral infections”. Journal of Theoretical Biology. Publ. Elsevier. Amsterdam. Netherlands: 2005; Vol. 232 No.2: 223–234. DOI: 10.1016/j.jtbi.2004.08.001. 
10. Shih Ching Fu & Milne G. “A Flexible Automata Model for Disease Simulation”. Lecture Notes in Computer Science. Publ. Springer. New York City. USA: 2004; Vol. 3305: 642–649. DOI: 10.1007/978-3- 540-30479-1_66. 
11. Shwu-Ting Lee, Chih-Wen Wub & Tsu-Chiang Lei. “CA-GIS model for dynamic simulation of commercial activity development by the combination of ANN and Bayesian probability”. Procedia Computer Science. Publ. Elsevier. Amsterdam. Netherlands: 2013; Vol.18: 651–660. DOI: 10.1016/j.procs.2013.05.229. 
12. Wu, F. “Calibration of stochastic cellular automata: the application to rural-urban land conversions”. International Journal of Geographical Information Science. Taylor & Francis. London. United Kingdom: 2002; Vol.6 No.8: 795–818. DOI: 10.1080/13658810210157769. 
13. Blecic, I., Borruso, A., Cecchini A., D’Argenio, A., Montagnino, F. & Trunfio, G. A. “A Cellular Automata-Ready GIS Infrastructure for Geosimulation and Territorial Analysis”. Lecture Notes in Computer Science. Publ. Springer. New York City. USA: 2009; Vol.5592: 313-327. DOI: 10.1007/978-3-642-02454- 2_22. 
14. Stevens, D. & Dragićević, S. “A GIS-Based Irregular Cellular Automata Model of Land-Use Change”. Environment and Planning B: Urban Analytics and City Science. SAGE Publishing. Thousand Oaks. USA: 2007; Vol.34 No.4: 708–724. DOI: 10.1068/b32098. 
15. Dmitrishin, D. V., Franzheva, E. D., Iacob, I. E. & Stokolos, A. M. “Optimal Search For Nonlinear Discrete Systems Cycles”. Communications in Applied Analysis. Academic Solutions. London. United Kingdom: 2018; Vol.22 No.4: 663–694. DOI: 10.12732/caa.v22i4.11. 
16. Dmitrishin, D. V., Stokolos, A. M., Skrynnik, I. M. & Franzheva, E. D. “Generalization of nonlinear control for nonlinear discrete systems”. arXiv preprint. 2017. 31p. arXiv:1709.10410. 
17. Dmitrishin, D. V., Lesaja, G., Skrinnik, I. M. & Stokolos, A. M. “A new method for finding cycles by semilinear control”. Physics Letters A. Elsevier. Amsterdam. Netherlands: 2019; Vol.383 No.16: 1871– 1878. DOI: 10.1016/j.physleta.2019.03.013. 
18. Bays, K. “Introduction to Cellular Automata and Conway’s Game of Life”. Game of Life Cellular Automata. Publ. Springer. New York City. USA: 2010. p.1–7. DOI: 10.1007/978-1-84996-217-9_1. 
19. Gardner M. “The fantastic combinations of John Conway's new solitaire game “Life”. Scientific American. 1970. p.120–123. DOI: 10.1038/scientificamerican1070-120. 
20. Franzheva O. D. “Generalized One-dimensional Cellular Automata And Discrete Dynamic Systems”. Electrotechnic and Computer Systems. Publ. Ecology. Odessa. Ukraine: 2019; No. 30(106): 187– 198. DOI: 10.15276/eltecs.30.106.2019.20 (in Russian). 
21. Lobanov, A. I. “Cellular Automata Models”. Kompyuternyie issledovaniya i modelirovanie. Rospechat. Moscow. Russian Federation: 2010; No. 3(2): 73–293. DOI: 10.20537/2076-7633-2010-2-3-273- 293 (in Russian). 
22. Hobbs, B. & Ord, A. “Structural Geology. The Mechanics of Deforming Metamorphic Rocks”. Publ. Elsevier. Amsterdam. Netherlands: 2015. p.189–240. DOI: 10.1016/B978-0-12-407820-8.00007-2. 
23. McGillicuddy, D. J. “Small-scale Patchiness, Models of”. Encyclopedia of Ocean Sciences (Second Edition). Publ. Elsevier. Amsterdam. Netherlands: 2001. p. 474–487. DOI: 10.1016/B978-012374473- 9.00405-7.
Published:
Last download:
23 Oct 2021

Contents


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]