Scientific Journal

Herald of Advanced Information Technology

THERMAL CONTROL OF THERMOELECTRIC COOLING DEVICES OF TRANSMISSION AND RECEIVING ELEMENTS OF ON-BOARD INFORMATION SYSTEMS
Abstract:
The work is a continuation of studies of the dynamic characteristics of thermoelectric coolers aimed at analyzing the influence of temperature differences, current operating modes, design parameters of the device and physical parameters of the material of thermoelements for a time constant. The article analyzes the effect of the heat sink capacity of the radiator on the dynamic characteristics, energy and reliability indicators of a single-stage thermoelectric cooler. A dynamic model of a thermoelectric cooler has been developed taking into account the weight and size parameters of the radiator, which relate the main energy indicators of the cooler with the heat removal capacity of the radiator, operating currents, the value of the heat load and the relative temperature difference. The analysis of the dynamic model shows that with an increase in the heat-removing capacity of the radiator at a given thermal load and various current modes, the main parameters of the cooler change. The required number of thermoelements, power consumption, time to reach a stationary mode, and relative failure rate are reduced. With an increase in the relative operating current, the time to reach the stationary mode of operation decreases for different values of the heat sink capacity of the radiator. It is shown that the minimum time to reach the stationary operating mode is provided in the maximum refrigerating capacity mode. The studies were carried out at different values of the heat sink capacity of the radiator in the operating range of temperature drops and the geometry of thermoelements. The possibility of minimizing the heat-dissipating surface of the radiator at various current operating modes and the relationship with the main parameters, reliability indicators and the time to reach the stationary operating mode are shown. Comparative analysis of weight and size characteristics, main parameters, reliability indicators and dynamics of functioning with rational design makes it possible to choose compromise solutions, taking into account the weight of each of the limiting factors.
Authors:
Keywords
DOI
10.15276/hait.04.2020.5
References
1. Zaikov, V. P., Kinshova, L. A., Moiseev, V. F. “Prediction of reliability on thermoelectric cooling devices”. [KN.1]. Single-stage devices. Publ. Politehperiodika. Odessa. Ukraine: 2009. 120 p. (in Russian).
2. Huu Luong Quach, Ji Hyung Kim & Yoon Seok Chae. “Analysis on Electrical and Thermal Characteristics of a No-Insulation HTS Coil Considering Heat Generation in Steady and Transient States”. IEEE Transactions on Applied Superconductivity. 2019; Vol.29 Issue 5. DOI: 10.1109/TASC.2019.2898543. 
3. Huu Luong Quach, Ji Hyung Kim & Yoon Seok Chae. “Analysis on Electrical and Thermal Characteristics of a No–Insulation HTS Coil Considering Heat Generation in Steady and Transient States”. IEEE Transactions on Applied Superconductivity. Aug. 2019; Vol. 29 Issue 5. DOI: 10.1109/TASC.2019.2898543. 
4. Hyoung-Seuk Choi, Won-SeonSeo & Duck-Kyun Choi. “Prediction of Reliability on Thermoelectric Module through Accelerated Life Test and Physics-of-Failure”. Electronic Materials Letters, 2011; 7. Article number: 271. DOI: 10.1007/s13391–011–0917–x. 
5. Leila Bakhtiaryfard & YeongShu Chen. “Design and Analysis of a Thermoelectric Module to Improve the Operational Life. Advances in Mechanical Engineering”. 2014. 7(1). DOI: 10.1155/2014/152419. 
6. Manikandan S., Kaushik, S.C. & Ronggui Yang. “Modified pulse operation of thermoelectric coolers for building cooling applications”. Energy Conversion and Management, 2017; 140: 145 –156. DOI: 10.1016/j.enconman. 2017.03.003. 
7. Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F. & Chen, G. “Perspectives on thermoelectrics: from fundamentals to device Applications”. Energy & Environmental Science. 2012. 5. 5147–5162. DOI: https://doi.org/10.1039/C1EE02497C. 
8. Ping, Yang. “Approach on thermoelectricity reliability of board–level backplane based on the orthogonal experiment design”. International Journal of Materials and Structural Integrity. 2010; 4 (2-4): 170–185. DOI: 10.1504/IJMSI.2010.035205. 
9. En Fang, Xiaojie Wu, Yuesen Yu & Junrui Xiu. “Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps”. Open Physics. 2017; Vol. 15: 27–34. DOI: 10.1515/phys-2017-0004. 
10. Leila Bakhtiaryfard & Yeong Shu Chen. “Design and Analysis of a Thermoelectric Module to Improve the Operational Life”. Advances in Mechanical Engineering. 2014; 7(1). DOI: 10.1155/2014/152419. 
11. Hee Seok Kim, Tianbao Wang, Weishu Liu & Zhifeng Ren. “Engineering Thermal Conductivity for Balancing Between Reliability and Performance of Bulk Thermoelectric Generators”. Advanced Functional Materials. 2016; Vol. 26: 3678–3686. DOI: org/10.1002/adfm.201600128. 
12. Hyoung-Seuk Choi, Won-Seon Seo & Duck-Kyun Choi. “Prediction of Reliability on Thermoelectric Module through Accelerated Life Test and Physics-of-Failure”. Electronic_Materials_Letters 7. 2011. p. 271–275. DOI: 10.1007/s13391–011–0917 –x. 
13. Sootsman, J. R., Chung, D. Y. & Kanatzidis, M. G. „New and Old Concepts in Thermoelectric Materials”. Angewandte Chemie International Edition. 2009; 48: 8616–8639. DOI: https://doi.org/10.1002/anie.200900598. 
14. Farshad Tajeddini, Mohammad Eslami & Nazanin Etaati. “Thermodynamic analysis and optimization of water harvesting from air using thermoelectric coolers”. Journal Energy conversion and management. 2018; Vol.174: 417–429. DOI: org/10.1016/j.enconman.2018.08,045. 
15. Changki, Mo. “Structural Reliability Evaluation of Thermoelectric Generator Modules: Influence of End Conditions, Leg Geometry, Metallization, and Processing Tempera-tures”. Journal of Electronic Materials. 2018; Vol. 47 Issue 10: 6101–6120. DOI: 10.1007/s11664-018-6505-1. 
16. Haopeng Song, Kun Song & Cunfa Gao. “Temperature and thermal stress around an elliptic functional defect in a thermoelectric material”. Mechanics of Materials. 2019; Vol. 130: 58–64. DOI: 10.1016/j.mechmat.2019.01.008. 
17. Jurgensmeyer, A. L. “High Efficiency Thermoelectric Devices Fabricated Using Quantum Well Confinement Techniques”. Colorado State University. 2011. 54 p. – Access mode: https://mountainscholar.org/bitstream/handle/10217/51877/Jurgensmeyer_colostate_0053N_10583.pdf?sequ ence=1. – (Active link: 07.11.20200). 
18. Rowe, D. M. “Thermoelectrics and its Energy Harvesting”. Materials, Preparation and Characterization in Thermoelectrics. Boca Raton: CRC Press. 2012. 544 p. 
19. Farshad Tajeddini, Mohammad Eslami & NazaninEtaati. “Thermodynamic analysis and optimization of water harvesting from air using thermoelectric coolers”. Journal Energy conversion and management. 2018; Vol.174:417–429. DOI: 10.1016/j.enconman. 2018.08.045.
20. Zaykov, V., Mescheryakov, V. & Zhuravlov, Yu. “Analysis of the possibility to control of the inertia of the thermoelectric cooler”. Eastern–European Journal of Enterprise Technologies. 2017. 6/8 (90): 17–24. DOI: 10.15587/1729-4061.2017.116005. 
21. Mani Ranjan & Tanmoy Maiti. “Device modeling and performance optimization of thermoelectric generators under isothermal and isoflux heat source condition”. Journal of Power Sources. December 2020; Vol. 480, 31. DOI: https://doi.org/10.1016/j.jpowsour.2020.228867. 
22. Ugur Erturun, Karla Mossi. “A Feasibility Investigation on Improving Structural Integrity of Thermoelectric Modules with Varying Geometry”. Smart Materials, Adaptive Structures and Intelligent Systems. 2012. p.939–945. DOI: 10.1115/SMASIS2012–8247. 
23. Zaykov, V., Mescheryakov, V., Zhuravlov, Yu. & Mescheryakov, D. “Analysis of dynamics and prediction of reliability indicators of a cooling thermoelement with the predefined geometry of branches”, Eastern–European Journal of Enterprise Technologies, 2018; No. 5/8(95): 41–51. DOI: https://doi.org/10.15587/1729-4061.2018.123890. 
24. Corson, L., Cramer, Hsin Wang & Kaka Ma. “Performance of Functionally Graded Thermoelectric Materials and Devices: A Review”. Journal of Electronic Materials. 2018; No.9: 5122–5132. DOI: org/10.1007/s11664-018-6402-7. 
25. Corson, L. Cramer, Wenjie Li, Zhi-He Jin, Jue Wang, Kaka Ma & Troy B. Holland. “Techniques for Mitigating Thermal Fatigue Degradation, Controlling Efficiency, and Extending Lifetime in a ZnO Thermoelectric Using Grain Size Gradient FGMs”. Journal of Electronic Materials. 2017; No.1: 866–872. DOI: https://doi.org/10.1007/s11664-017-5879-9. 
26. Vladimir Zaykov, Vladimir Mescheryakov & Yurii Zhuravlov. “Designing a singlecascade thermoelectric cooler with the predefined time to enter a stationary mode of operation”. Eastern-European Journal of Enterprise Technologies, 2019; No. 8(102): 38–46. DOI: https://doi.org/10.15587/1729- 4061.2019.184400. 
27. Zaykov, V. P., Mescheryakov, V. I. & Zhuravlov, Yu. I. “Analysis of dynamic and reliability indicators of a thermoelectric cooler at minimization of a complex of three basic parameters”. Herald of Advanced Information Technology. 2020; Vol.3 No.3: 174–184. DOI: 10.15276/hait.03.2020.6. 
28. Zaykov, V., Mescheryakov, V. & Zhuravlov, Yu. “Developing a model to control the thermal mode of thermoelectric devices by minimizing the set of three basic parameters”. Eastern–European Journal of Enterprise Technologies. 2020; No. 5/8(107): 63–73. DOI: 10.15587/1729-4061.2020.214154. 
29. Zaykov, V., Mescheryakov, V., Gnatovskya, A. & Zhuravlov, Yu. “Influence of efficiency of preproduct on reliability of thermo-electric cooling devices indexes”. [Part of І]: One factorable TEC. Technology and constructing in an electronic apparatus. 2015; No.1: 44–48 (in Russian). DOI: 10.15222/TKEA2015.1.44. 
30. Vladimir Zaykov, Vladimir Mescheryakov & Yurii Zhuravlov. “Studying the influence of the thermoelectric materials parameters on the dynamics of singlecascade cooling devices”. Eastern-European Journal of Enterprise Technologies 2020; No. 8(103): 6–18. DOI: org/10.15587/1729-4061.2020.195730.
Published:
Last download:
20 Oct 2021

Contents


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]